3.10.85 \(\int \frac {(a+b \sec (c+d x)) (A+B \sec (c+d x)+C \sec ^2(c+d x))}{\sec ^{\frac {3}{2}}(c+d x)} \, dx\) [985]

3.10.85.1 Optimal result
3.10.85.2 Mathematica [C] (verified)
3.10.85.3 Rubi [A] (verified)
3.10.85.4 Maple [B] (verified)
3.10.85.5 Fricas [C] (verification not implemented)
3.10.85.6 Sympy [F]
3.10.85.7 Maxima [F]
3.10.85.8 Giac [F]
3.10.85.9 Mupad [F(-1)]

3.10.85.1 Optimal result

Integrand size = 41, antiderivative size = 146 \[ \int \frac {(a+b \sec (c+d x)) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\frac {2 (A b+a B-b C) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{d}+\frac {2 (3 b B+a (A+3 C)) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{3 d}+\frac {2 a A \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}+\frac {2 b C \sqrt {\sec (c+d x)} \sin (c+d x)}{d} \]

output
2/3*a*A*sin(d*x+c)/d/sec(d*x+c)^(1/2)+2*b*C*sin(d*x+c)*sec(d*x+c)^(1/2)/d+ 
2*(A*b+B*a-C*b)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE( 
sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d+2/3*(3*B*b 
+a*(A+3*C))*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin( 
1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d
 
3.10.85.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 3.49 (sec) , antiderivative size = 197, normalized size of antiderivative = 1.35 \[ \int \frac {(a+b \sec (c+d x)) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\frac {e^{-i d x} \sqrt {\sec (c+d x)} (\cos (d x)+i \sin (d x)) \left (6 i A b \cos (c+d x)+6 i a B \cos (c+d x)-6 i b C \cos (c+d x)+2 (3 b B+a (A+3 C)) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )-2 i (A b+a B-b C) e^{i (c+d x)} \sqrt {1+e^{2 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},-e^{2 i (c+d x)}\right )+6 b C \sin (c+d x)+a A \sin (2 (c+d x))\right )}{3 d} \]

input
Integrate[((a + b*Sec[c + d*x])*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/S 
ec[c + d*x]^(3/2),x]
 
output
(Sqrt[Sec[c + d*x]]*(Cos[d*x] + I*Sin[d*x])*((6*I)*A*b*Cos[c + d*x] + (6*I 
)*a*B*Cos[c + d*x] - (6*I)*b*C*Cos[c + d*x] + 2*(3*b*B + a*(A + 3*C))*Sqrt 
[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2] - (2*I)*(A*b + a*B - b*C)*E^(I*(c 
 + d*x))*Sqrt[1 + E^((2*I)*(c + d*x))]*Hypergeometric2F1[1/2, 3/4, 7/4, -E 
^((2*I)*(c + d*x))] + 6*b*C*Sin[c + d*x] + a*A*Sin[2*(c + d*x)]))/(3*d*E^( 
I*d*x))
 
3.10.85.3 Rubi [A] (verified)

Time = 0.90 (sec) , antiderivative size = 149, normalized size of antiderivative = 1.02, number of steps used = 14, number of rules used = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.341, Rules used = {3042, 4562, 27, 3042, 4535, 3042, 4258, 3042, 3120, 4534, 3042, 4258, 3042, 3119}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a+b \sec (c+d x)) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sec ^{\frac {3}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a+b \csc \left (c+d x+\frac {\pi }{2}\right )\right ) \left (A+B \csc \left (c+d x+\frac {\pi }{2}\right )+C \csc \left (c+d x+\frac {\pi }{2}\right )^2\right )}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx\)

\(\Big \downarrow \) 4562

\(\displaystyle \frac {2 a A \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}-\frac {2}{3} \int -\frac {3 b C \sec ^2(c+d x)+(3 b B+a (A+3 C)) \sec (c+d x)+3 (A b+a B)}{2 \sqrt {\sec (c+d x)}}dx\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{3} \int \frac {3 b C \sec ^2(c+d x)+(3 b B+a (A+3 C)) \sec (c+d x)+3 (A b+a B)}{\sqrt {\sec (c+d x)}}dx+\frac {2 a A \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \int \frac {3 b C \csc \left (c+d x+\frac {\pi }{2}\right )^2+(3 b B+a (A+3 C)) \csc \left (c+d x+\frac {\pi }{2}\right )+3 (A b+a B)}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 a A \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\)

\(\Big \downarrow \) 4535

\(\displaystyle \frac {1}{3} \left (\int \frac {3 b C \sec ^2(c+d x)+3 (A b+a B)}{\sqrt {\sec (c+d x)}}dx+(a (A+3 C)+3 b B) \int \sqrt {\sec (c+d x)}dx\right )+\frac {2 a A \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \left ((a (A+3 C)+3 b B) \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}dx+\int \frac {3 b C \csc \left (c+d x+\frac {\pi }{2}\right )^2+3 (A b+a B)}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx\right )+\frac {2 a A \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\)

\(\Big \downarrow \) 4258

\(\displaystyle \frac {1}{3} \left (\int \frac {3 b C \csc \left (c+d x+\frac {\pi }{2}\right )^2+3 (A b+a B)}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} (a (A+3 C)+3 b B) \int \frac {1}{\sqrt {\cos (c+d x)}}dx\right )+\frac {2 a A \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \left (\int \frac {3 b C \csc \left (c+d x+\frac {\pi }{2}\right )^2+3 (A b+a B)}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} (a (A+3 C)+3 b B) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx\right )+\frac {2 a A \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {1}{3} \left (\int \frac {3 b C \csc \left (c+d x+\frac {\pi }{2}\right )^2+3 (A b+a B)}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) (a (A+3 C)+3 b B)}{d}\right )+\frac {2 a A \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\)

\(\Big \downarrow \) 4534

\(\displaystyle \frac {1}{3} \left (3 (a B+A b-b C) \int \frac {1}{\sqrt {\sec (c+d x)}}dx+\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) (a (A+3 C)+3 b B)}{d}+\frac {6 b C \sin (c+d x) \sqrt {\sec (c+d x)}}{d}\right )+\frac {2 a A \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \left (3 (a B+A b-b C) \int \frac {1}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) (a (A+3 C)+3 b B)}{d}+\frac {6 b C \sin (c+d x) \sqrt {\sec (c+d x)}}{d}\right )+\frac {2 a A \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\)

\(\Big \downarrow \) 4258

\(\displaystyle \frac {1}{3} \left (3 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} (a B+A b-b C) \int \sqrt {\cos (c+d x)}dx+\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) (a (A+3 C)+3 b B)}{d}+\frac {6 b C \sin (c+d x) \sqrt {\sec (c+d x)}}{d}\right )+\frac {2 a A \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \left (3 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} (a B+A b-b C) \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) (a (A+3 C)+3 b B)}{d}+\frac {6 b C \sin (c+d x) \sqrt {\sec (c+d x)}}{d}\right )+\frac {2 a A \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {1}{3} \left (\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) (a (A+3 C)+3 b B)}{d}+\frac {6 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) (a B+A b-b C)}{d}+\frac {6 b C \sin (c+d x) \sqrt {\sec (c+d x)}}{d}\right )+\frac {2 a A \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\)

input
Int[((a + b*Sec[c + d*x])*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/Sec[c + 
 d*x]^(3/2),x]
 
output
(2*a*A*Sin[c + d*x])/(3*d*Sqrt[Sec[c + d*x]]) + ((6*(A*b + a*B - b*C)*Sqrt 
[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d + (2*(3*b*B 
 + a*(A + 3*C))*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + 
d*x]])/d + (6*b*C*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/d)/3
 

3.10.85.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 4258
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x] 
)^n*Sin[c + d*x]^n   Int[1/Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && 
 EqQ[n^2, 1/4]
 

rule 4534
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) 
+ (A_)), x_Symbol] :> Simp[(-C)*Cot[e + f*x]*((b*Csc[e + f*x])^m/(f*(m + 1) 
)), x] + Simp[(C*m + A*(m + 1))/(m + 1)   Int[(b*Csc[e + f*x])^m, x], x] /; 
 FreeQ[{b, e, f, A, C, m}, x] && NeQ[C*m + A*(m + 1), 0] &&  !LeQ[m, -1]
 

rule 4535
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_.)*(x_)]* 
(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.)), x_Symbol] :> Simp[B/b   Int[(b*Cs 
c[e + f*x])^(m + 1), x], x] + Int[(b*Csc[e + f*x])^m*(A + C*Csc[e + f*x]^2) 
, x] /; FreeQ[{b, e, f, A, B, C, m}, x]
 

rule 4562
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_. 
))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a 
_)), x_Symbol] :> Simp[A*a*Cot[e + f*x]*((d*Csc[e + f*x])^n/(f*n)), x] + Si 
mp[1/(d*n)   Int[(d*Csc[e + f*x])^(n + 1)*Simp[n*(B*a + A*b) + (n*(a*C + B* 
b) + A*a*(n + 1))*Csc[e + f*x] + b*C*n*Csc[e + f*x]^2, x], x], x] /; FreeQ[ 
{a, b, d, e, f, A, B, C}, x] && LtQ[n, -1]
 
3.10.85.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(387\) vs. \(2(182)=364\).

Time = 4.10 (sec) , antiderivative size = 388, normalized size of antiderivative = 2.66

method result size
default \(-\frac {2 \left (4 a A \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-2 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a +a A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-3 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) b +3 B b \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-3 B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a -6 C \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b +3 C a \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+3 C \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) b \right )}{3 \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(388\)
parts \(\frac {2 \left (A b +B a \right ) \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}-\frac {2 \left (B b +C a \right ) \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}-\frac {2 C b \left (-2 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}-\frac {2 a A \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (4 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{3 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(643\)

input
int((a+b*sec(d*x+c))*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/sec(d*x+c)^(3/2),x,me 
thod=_RETURNVERBOSE)
 
output
-2/3*(4*a*A*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4-2*A*cos(1/2*d*x+1/2*c) 
*sin(1/2*d*x+1/2*c)^2*a+a*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/ 
2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-3*A*(sin(1/2*d*x+1/2 
*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c) 
,2^(1/2))*b+3*B*b*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^ 
(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-3*B*(sin(1/2*d*x+1/2*c)^2)^(1/ 
2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))* 
a-6*C*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2*b+3*C*a*(sin(1/2*d*x+1/2*c)^ 
2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^( 
1/2))+3*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*El 
lipticE(cos(1/2*d*x+1/2*c),2^(1/2))*b)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1 
/2*c)^2-1)^(1/2)/d
 
3.10.85.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.11 (sec) , antiderivative size = 184, normalized size of antiderivative = 1.26 \[ \int \frac {(a+b \sec (c+d x)) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\frac {\sqrt {2} {\left (-i \, {\left (A + 3 \, C\right )} a - 3 i \, B b\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + \sqrt {2} {\left (i \, {\left (A + 3 \, C\right )} a + 3 i \, B b\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 3 \, \sqrt {2} {\left (-i \, B a - i \, {\left (A - C\right )} b\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 3 \, \sqrt {2} {\left (i \, B a + i \, {\left (A - C\right )} b\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + \frac {2 \, {\left (A a \cos \left (d x + c\right ) + 3 \, C b\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{3 \, d} \]

input
integrate((a+b*sec(d*x+c))*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/sec(d*x+c)^(3/2 
),x, algorithm="fricas")
 
output
1/3*(sqrt(2)*(-I*(A + 3*C)*a - 3*I*B*b)*weierstrassPInverse(-4, 0, cos(d*x 
 + c) + I*sin(d*x + c)) + sqrt(2)*(I*(A + 3*C)*a + 3*I*B*b)*weierstrassPIn 
verse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - 3*sqrt(2)*(-I*B*a - I*(A - C 
)*b)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*si 
n(d*x + c))) - 3*sqrt(2)*(I*B*a + I*(A - C)*b)*weierstrassZeta(-4, 0, weie 
rstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) + 2*(A*a*cos(d*x + 
c) + 3*C*b)*sin(d*x + c)/sqrt(cos(d*x + c)))/d
 
3.10.85.6 Sympy [F]

\[ \int \frac {(a+b \sec (c+d x)) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\int \frac {\left (a + b \sec {\left (c + d x \right )}\right ) \left (A + B \sec {\left (c + d x \right )} + C \sec ^{2}{\left (c + d x \right )}\right )}{\sec ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx \]

input
integrate((a+b*sec(d*x+c))*(A+B*sec(d*x+c)+C*sec(d*x+c)**2)/sec(d*x+c)**(3 
/2),x)
 
output
Integral((a + b*sec(c + d*x))*(A + B*sec(c + d*x) + C*sec(c + d*x)**2)/sec 
(c + d*x)**(3/2), x)
 
3.10.85.7 Maxima [F]

\[ \int \frac {(a+b \sec (c+d x)) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} {\left (b \sec \left (d x + c\right ) + a\right )}}{\sec \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

input
integrate((a+b*sec(d*x+c))*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/sec(d*x+c)^(3/2 
),x, algorithm="maxima")
 
output
integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*(b*sec(d*x + c) + a)/sec 
(d*x + c)^(3/2), x)
 
3.10.85.8 Giac [F]

\[ \int \frac {(a+b \sec (c+d x)) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} {\left (b \sec \left (d x + c\right ) + a\right )}}{\sec \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

input
integrate((a+b*sec(d*x+c))*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/sec(d*x+c)^(3/2 
),x, algorithm="giac")
 
output
integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*(b*sec(d*x + c) + a)/sec 
(d*x + c)^(3/2), x)
 
3.10.85.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(a+b \sec (c+d x)) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\int \frac {\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )\,\left (A+\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right )}{{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \]

input
int(((a + b/cos(c + d*x))*(A + B/cos(c + d*x) + C/cos(c + d*x)^2))/(1/cos( 
c + d*x))^(3/2),x)
 
output
int(((a + b/cos(c + d*x))*(A + B/cos(c + d*x) + C/cos(c + d*x)^2))/(1/cos( 
c + d*x))^(3/2), x)